
NASA-CR-1951 72

Intelligent Systems and Advanced User Interfaces

for

Design, Operation, and Maintenance of

Command Management Systems

/

J

April 1 - December 30, 1993

William J. Potter, Code 514, Technical Monitor

NASA Goddard Space Flight Center

NAG 5-2226

o,
f_
.t
f_
I

4"
O,
Z

Christine lVL Mitchell

E24-X13

Center for Human-Machine Systems Research

School of Industrial & Systems Engineering

Georgia Institute of Technology _-
Z

Atlanta, Georgia 30332-0205 o
t--4

(404) 894-4321 -J
J
t_

cm@chmsr.gatech.edu __
Z

December 1993
_4

ty_
o_

I

tj
!

c_

t)
c-

C3
i--4

W- ,--

u'_ ;,IZ,-
,-:rE

ZG _

L4J

f_.3U3 LL c_
Z UJ _.3 _Z
_ U_

_ E3 7 _-

<.2 Z

._ L_ _-- Z

_0
0
t_
o

1-

Q

M
0

0

I

L

2

_t,q

c_ Z

m

_ m

Background

Historicallycommand management systems (CMS) have been largeand expensive

spacecraft-specificsoftwaresystems thatwere costlytobuild,operate,and maintain. Current and

emerging hardware, software,and user interfacetechnologiesmay offeran opportunityto

facilitatethe initialformulationand designofa spacecraft-specificCMS as wellas a todevelopa

more generic CMS system. New technologies,in additiontoa coreCMS common to a range of

spacecraft,may facilitatingthe trainingand enhance the efficiencyofCMS operations.

Current MOC (missionoperationscenter)hardware and softwareincludeUnix

workstations,the C/C++ programming languages,and an X window interface.This

configurationprovidesthe power and flexibilityto supportsophisticatedand intelligentuser

interfacesthat exploitstate-of-the-arttechnologiesin human-machine interaction,artificial

intelligence,and softwareengineering.One ofthe goalsofthisresearchistoexplorethe extentto

which technologiesdevelopedin the researchlaboratorycan be productivelyappliedin a complex

system such as spacecraftcommand management. Initialexamination ofsome ofthe issuesin

CMS design and operationsuggeststhat applicationoftechnologiessuch as intelligentplanning,

case-based reasoning,human-machine systems design and analysistools(e.g.,operator and

designer models),and human-computer interactiontools,(e.g.,graphics,visualization,and

animation),may provide significantsavingsin the design,operation,and maintenance ofthe

CMS fora specificspacecraftas wellas continuityforCMS designand development across

spacecraft.

Background Analysis

The first six months of this research saw a broad investigation by Georgia Tech

researchers into the function, design, and operation of current and planned command

management systems at Goddard Space Flight Center. As the/_rst step we attempted to understand

the current and anticipated horizons of command management systems at Goddard.

Understanding Current (Representative)CMSs

Command management systems have changed significantlyover the past decade. With

the advent ofpowerful and affordableworkstations,the CMS system and functioncan be fully

integratedintothe mission controlcenteractivities,both functionallyand physically.Thus, the

CMS systems forSAMPEX, WIND, and POLAR, and forallmissionshenceforth,willbe located

within the MOC and completelyoperatedby FOT members with mission planning

responsibilities.

This realizationwas important as itcurtailedsome ofthe initiallyplanned Georgia Tech

activitiesattempting to understand the historyand scopeofCMS systems. Initially,we planned

detailedanalyses ofCMSs forsuch missions as ERBS, GRO, and COBE. Preliminary

2

investigation revealed that the age of these missions meant that the command management

function was distributed and a great deal of CMS activity for some of these missions was not

conducted within the mission operations facilities (e.g., COBE CMS). Furthermore, some of the

CMS functions seemed to be overwhelmed by limitations that current and planned electronic

communications would eliminate (e.g., the arduous mission planning process for ERBS).

As a working hypothesis, we decided to assume that the 'workstation CMS' model for form,

function and operation, as typified by the SAMPEX CMS, was a good model for current and

planned CMS systems. Thus, after spending some time with the mission planning personnel for

COBE, ERBS, and GRO, we focused our attention on mission planning operations in SAMPEX,

SOHO, WIND/POLAR, with the intention to include EUVE, FAST, and SWAS as time permits.

Most recently, we examined the MOC-based approach to mission operations. The MOC

concept integrates real-time command and off-line command management functions. The MOC,

as designed for example for XTE, provides flight operations team members with an integrated

system to perform commanding, real-time health and safety monitoring, planning, scheduling,

and preparation of stored command loads. As with the workstation model of CMS, the integration

of the command management function with the real-time function is likely to be the commonly

accepted practice. Future Georgia Tech work in this area will assume command management

will be carried out in the context of an integrated MOC.

DetailedExamination ofC2W_SSoftware

Currently,we have obtainedand moved toGeorgia Tech two GSFC command management

systems, specificallythe CMSs for SAMPEX and WIND and POLAR. The SAMPEX CMS offered

many advantages. First,sinceitwas writtenin C++ fora Unix environment, and initially

developedon atSun workstation,we were able,earlyinthisresearchproject,toportthe SAMPEX

CMS tothe Center forHuman-Machine System Research atGeorgia Tech. Although we have

gathered a greatdealofdocumentation on CMSs formany systems,actuallybeing abletorun the

SAMPEX system and browse the softwarehas providedgreatinsight.

More recently,we obtaineda copy ofthe WIND and POLAR CMS and installediton our

system. Comparison ofthe two systems demonstrated the lackofcommonality thatcharacterizes

command management system software. Having both the SAMPEX and WIND/POLAR CMSs

availableforreview providesthe GeorgiaTech researcherswith an important opportunityto

compare and contrasttwo actualsystems and toexplorethe extentand natureofre-useor the lack

there-of.

In the next few months, preliminarycopiesof both the FAST and SOHO CMSs willbe

available.We plan to extend our currentexamination ofoperationaland in-developmentCMSs,

by carefullyreviewingboth systems. We willexplorethe extenttowhich the FAST CMS, as a

SMEX mission with the explicitgoalofhigh re-use,re-usesconcepts,functions,code,etc.from

_

SAMPEX. More generally, we will review each new CMS as the various releases become

available and understand how they relate to existing (e.g., WIND/POLAR) and other planned

(e.g., SOHO, XTE, TRMM, ACE) CMSs.

Review of Planned CMS

To ensure thatwe understand both current(i.e.,modern) CMSs and thoseunder

development,we have spent a greatdealoftime tryingtolearningabout CMSs thatare currently

being developed. We have attendedcriticaldesignreviews, spoken to CMS developersand FOT

responsibleforwritingrequirements,and reviewed documents forboth the FAST, SWAS and

SOHO command management systems. To ensure that we maintain an accurateand up-to-date

perspective,our participationinthese processeswillcontinueforthe foreseeablefuture. In

addition,we willparticipateinallMOC reviews forXTE, TRMM, and ACE.

Analysisof CMS Operations

In additionto studyingthe SAMPEX CMS software,we conducteda detailedtaskanalysis

ofSAMPEX CMS operations.This study documents the operationsofSAMPEX mission planning:

dailyloads,weekend loads,and atypicalloads,e.g.,'patch'loads. The goalisto understand

operationallywhat isdone,and how. In particular,the studyidentifiesneeded inputsto the process

(e.g.,the RUST, FDF, loadrequirements),notingthe ease with which thisinformationisobtained

and enteredintothe CMS; the CMS loadgenerationprocess;the CMS load verificationprocess

(who does what, e.g.,FOT verification,how, with what knowledge); and load

uplinking/verification.The study tracksroutineoperationsemphasizing what makes the job

'hard'or cognitivelycomplex, and why.

A reportdocumenting thisanalysisisin progress.The objectiveofthe study isto

understand how mission planning isconducted and the extentto which differencesin CMS design

affectoperations.To ensure generalityand highlightdifferences,a similarstudy isbeing

conducted of WIND/POLAR CMS operations.

Summary

The next sixtotwelvemonths ofthisprojectwillseethe continuationofallofthe above

activities.As softwaresystems become available,we willobtaincopiesofthe software.By

browsing the code,we willcontinuetoexplorecommonalitiesand differences,attempting tofocus

reasons forthe lackofextensivere-useand toidentifyopportunitiestofacilitatere-usein new

systems. We will continue to participate in design reviews by attending the reviews themselves,

reading the associated documentation, and interacting with CMS developers and FOT responsible

for defining CMS requirements.

4

Articulation of CMS Commonalties and Causes of Low Re-Use

The next component of this project is an analysis documenting commonalities and

differences among CMS that we have studied. The analysis of commonalties and differences

together with associated causes of low re-use provides the assumptions that underpin the proposed

research and development activities outlined in the section that follows. This analysis is on-

going activity, but preliminary findings are summarized below.

The Problem

CMSs are hand-craftedmission by mission at greatcostforeach individualmission.

There isminimal re-useofCMSs from mission to mission. Typicallyre-usefailsto occur across

alllevels: from conceptualdesign,tofunctionalspecification,tolinesofsourcecode.

Examination ofSAMPEX and the WIND/POLAR CMSs demonstrates thatthese are very

differentsystems. At the codelevelthe SAMPEX CMS iswritteninC++ and isobject-oriented

in design. The WIND/POLAR CMS iswrittenin C and lacksany ofthe data structures(e.g.,

objects)thatcharacterizethe SAMPEX system.

SAMPEX and FAST are both spacecraftinthe SMEX mission.One ofthe SMEX goalsis

extensivere-use.Comparison ofthe SAMPEX and FAST CMS (currentlyonlyavailabletoGT

researchersthrough examination ofthe CDR documents) demonstrates thatre-use,measured

at the linesof code level(i.e.,deliveredsourceinstruction)isrollquite low,approximately

49% re-useforFAST, 3I% forSOHO, 43% EUVE.

Examination ofCMS descriptions,as typifiedby criticaldesignreview materials,

demonstrates that even descriptionsofCMSs lacka common vocabulary.Comparing and

contrastingCMSs, based on availabledocumentation,isvery difficult.There isno uniform

setofCMS components or CMS functionsthatcharacterizehow CMSs are describedand

measured.

Re-use,when itoccursat all,ismeasured (and implemented. ?) at the code level--potentially

forsakingenhanced productivityand costsavingsforre-useat conceptualand functional
levels.

• Because a CMS isessentiallyhand-craftedforeach mission thereislittleaccumulation of

experience,eitherwhat worked or what did not,from missiontomission.

A Vision of a Solution

The environment in which command management system design occurs is one where

multiple design teams independently (and at times concurrently_ hand craft from scratch CMSs

in response to the needs of space science missions. Despite the uniqueness of each CMS, they all

exhibit a core set of capabilities (e.g., load generation, command database utilization, activity

planning, event pool management, activity definition support, etc.. This set of capabilities

represents a common and persistent collection of user needs as we_l as a recurring set of design

problems In many cases, these design problems are resolved independently by the various design

teams without regardto priorsolutions.I Solvingrecurringdesignproblems in thisfashion

incursunnecessary development costs,risksrepeatingflawed or ineffectivedesigns,and leaves

to chancethe rediscoveryofpreviouslyprovendesignfeatures.Itisthistypeofsituation,where the

disseminationofpast experiencecouldprovidegreatadvantage, thatmakes command

management system designan idealsettingin which toexplorethe utilityofcase-based

reasoning systems.

A case-basedreasoningsystem accumulates experienceand makes itavailableto

designersoffuturesystems. Thus one essentialcomponent ofthe proposed solutiontofacilitate

CMS softwarere-useisuse ofcase-basedreasoningtechnologytoaccumulate experienceand

make itavailableto developers.The sectionwhich followsproposestouse case-basedreasoningin

two ways. The first,a near-term effort,usesa case-basedsystem tomake designfeaturesof

existing CMSs available to CMS developers. The second, a longer-term project, uses case-based

reasoning as the knowledge base for a CMS designer's associate. The associate guides CMS

designers by suggesting design features from existing CMS applications. When a new design

feature is necessary, the associate allows designers to formulate new features as extensions or

refinements of existing features. Using a case-based knowledge repository, the associate

automatically learns as new features are included in its knowledge base.

In addition to building future command management systems based on the experience of

past systems, design would greatly benefit from evolving a common look and feel to command

management systems and incorporating standard, commercially available software tools and

technologies. Currently, each CMS specifies and implements its own version of common

functions. These functions include interface functionality, data maintenance, and report

generation. Consider for example the following command management functions.

The interface software for SOHO is almost 50% of the system. In FAST, 28% of the source

code implements interface functions; less than half of this is re-used from existing systems. A

common interface across CMSs would facilitate re-use of existing software from conceptual

components to actual source code. A common look and feel would also facilitate operator

transitionfrom system to system and/orallowthe same mission planner to perform the mission

planning functionfor severalmissions. Informal discussionwith FOT suggeststhat they also

would prefera common lookand feel.Currentlyeven with the closelyrelatedSMEX missions,

FOT staffingplans callfora dedicatedmission planner foreach mission. Itispossiblethata

common look and feelwould eliminatethe need to have dedicatedmission-specificplanners.

A common look and feel,ifimplemented in standard commercial software (e.g.,Motif

interfacelibrary),would begin toevolvea common interfacesoftwarelibrary.With careful

I This isbestdemonstrated by thediversitydisplayedby CMSs as wellas theirhigh cost($5 -15

million)even when many requirements are substantiallythe same. See Morris (1993c).

attention to re-use, CMS interfaces would for the most part not only look the same, but the software

implementing the interface would for the most part be the same.

Data management and report generation functions show similar problems. For

WIND/POLAR, 25% of the software supports data base management and report generation. For

SOHO at least 10% is devoted to this function. Yet the functions are essentially the same across all

CMS applications. Discussion with designers suggests that a great deal of time and expense is

devoted to the development of customized code to maintain data bases and generate required

reports Ironically, CMS users are not always pleased with the outcome. For example, the SAMPEX

CMS-generated pass plan is discarded and the FOT created their own Macintosh-based form. If

there was some standardization, a commercial data base product might more cheaply and

efficiently accomplish the same functions. Commercial data base report generation capabilities

might allow the FOT to design their own reports, and refine them on an as needed basis.

Finally, initial review of CMS software and associated documentation suggests that a

generic CMS software core, similar in concept and form to the TPOCC sol, ware, is both feasible

and desirable. Generic CMS software would ensure high re-use by ensuring that each new CMS

shared common core components, functions, and implementation with all other CMSs. Using the

object-oriented metaphor, the CMS generic software would define a CMS class. Each mission

would instanciate the generic _vstem, extending or refining it as necessary. As with object-

oriented programming, , the common core structure from which all instances (i.e., specific CMS

applications) are derived would ensure a great deal of commonality from high-level concepts to the

lowest level implementation details. Combined with the case-based designer's associate,

described in more detail in the section that follows, a generic CMS core would assure a high degree

of commonality due to the core system, and would accumulate design enhancements and

extensions to make design experiences, both successful and unsuccessful, available to developers

of future systems.

Summary

The preliminary conclusion of this analysis is that extensive re-use can and should be

facilitated. Re-use will be greatly facilitated by making previous design experience available to

developers via a case-based reasoning system. Development of a common look and feel and the

use of standard commercial software will enhance commonalities across systems, and encourage

re-use of components developed for one system in subsequent systems. A generic CMS

architecture, which each new mission instanciates and extends, will anchor future designs to a

common parent. Finally, the ca._e-based designer's associate will guide mission unique

extensions and automatically archive new design choices in a development environment which

will make those decisions available to designers of future systems.

Project Plan to Facilitate Increased Re-Use

7

Based on the analysissummarized above,thisprojectproposesa threepart approach tofacilitate

CMS softwarere-use.

1. CMS Browser. A Case-Based Reasoning System to Facilitate Understanding

Current CMS Designs

2. Specification of Generic CMS Core Software

3. CMS Designer's Associate

CMS Browser:. A Case-Based Reasoning System

The CMS Browser is intended to be the first step in a comprehensive plan to facilitate

command management system software re-use. The purpose of the CMS Browser is to make

knowledge about existing command management systems available to CMS developers.

The CMS Browser is a case-based reasoning system. It will have two major components.

The knowledge base is a case base of experience gleaned in the design of existing command

management systems including SAMPEX, SOHO, WIND/POLAR, FAST and SWAS. At the

level of knowledge/experience contained in critical design review documentation, the CMS

Browser will demonstrate the commonalities and unique features of each of these systems.

The second component is the CMS Browser interface. Through its interface the Browser

will present to CMS developers a common conceptual model of the components and functions that

comprise command management system design. The CMS Browser is hierarchical. It will

facilitate the acquisition and efficient maintenance of a conceptual model of a CMS (e.g.,

activities, triggers) at the highest levels, while making available, via advanced technology tools

including visualization, animation, and the case base, successively lower levels of description

and mission-specific examples. Successive levels of detail might include trigger types (e.g.,

event or pass) and actual instances (e.g., cases) showing implementations and associated

differences for actual missions (e.g., SAMPEX vs. SWAS vs. FAST). Figure 1 depicts key

elements of the CMS Browser.

The goal of the CMS Browser is to foster, i.e., support with effective and intelligent

interfaces, the view that CMSs are more similar than different. The Browser organizes

information around features common to command management systems. Both the interface and

structure of the CMS Browser highlight commonalities among CMS implementations.

Differences among systems are represented as cases and can be compared and contrasted to

explore true differences necessitated by mission requirements versus differences that occur

serendipitously--differences that potentially degrade re-use and increase development costs.

Thus, as the first step in facilitating wide-spread re-use of CMS software, the CMS Browser

addresses the re-use problem by helping developers acquire a common conceptual model of CMS

components and functions.ExperienceofexistingCMS implementations can be viewed as

differencesor extensionsin the contextofthiscommon model.

As experienceevolvesand the knowledge base forthe CMS Browser grows,the Browser

might turn intoa powerfultoolthrough which NASA couldmonitor re-useand distinguishbetween

necessary and serendipitousdifferencesin proposed command management systems. The

Browser might form the coreofa computer-based on-linemanagement and presentationtool

through which a proposed CMS designcan be described,documented, and presentedforreview.

Each designfeature,say atthe levelofdetailofa criticaldesignreview,couldbe structuredand

presentedvia the CMS Browser. Each featurecouldbe describedeitheras a re-useofan existing

featureor as an extensionor addition.Extensionsand additionsbecome new casesin the

Browser'scasebase. The Browser couldfunctionas an audittoolwith which each 'new case'could

be inspected,compared toexistingalternatives,and evaluatedtoensure thatthe new feature

constitutesa legitimatedifference.

The CMS Browser isa firststeptofacilitatere-usein thatitmakes knowledge about

existingCMS designreadilyavailable.The CMS Browser, used as a on-linedocumentation and

presentationtool,encourages re-useby isolating,inspectingand evaluatingeach mission unique

feature,i.e.,a featurenot exhibitingre-use.The next stepsinthisprocess,however, supportre-use

by providinga coresetofgenericCMS modules and a development environment through which

mission-uniquerequirements are specified,and recordedforfutureuse in a casebase.

A Generic CMS Software Core

Two experiencesregardingsoftwarere-useat Goddard Space FlightCenter are very

instructive.The firstconcernsthe SAMPEX CMS. Although developedas a proof-of-concept

demonstration system,the SAMPEX CMS had surprisinglittleimpact on futuregenerationsof

command management systems. Apparently neitherthe softwareitselfnor itsassociated

documentation had substantialimpact infacilitatingre-useofmany ofitsinnovativeconcepts

and design features.As a designartifact,the SAMPEX CMS might be consideredan example.

The SAMPEX experiencesuggeststhatusing examples tofacilitatere-usemay not be an effective

strategy.

The second experienceisthe TPOCC software.Widely regarded as a success,the TPOCC

softwareprovides each mission with corecapabilities,functions,and code. Mission-unique

featuresare added onlywhen the coresystem failstoprovidenecessaryfunctionality.Using the

object-orientedparadigm ofgenericstructureand functionwhich isinstanciatedand extended,

the TPOCC softwarefacilitateswidespread re-use.

As a paradigm forre-use,the TPOCC model ofdefininga genericcoresystem ismuch

more promising than the SAMPEX strategyofprovidingan insightfulexample. Thus, thisproject

proposes the specification of a generic CMS software architecture from which future command

management systems can be built.

The next step in the development of a generic core is collaboration with CMS developers to

begin to define the components and functions that comprise such a core. To ensure applicability, it

might be advisable to develop the generic core in conjunction with the development of a mission-

specific CMS, delineating at every step core components from mission-specific extensions.

The CMS generic core system will help to ensure re-use by establishing a collection of

components and functions common to all mission. Design re-use due to learning from previous

experience complements re-use attributable to the core. Re-use based on learning from past

experience can only occur when existing design experience is accessible. Thus, the final

component of the proposed project to facilitate CMS software re-use is the development of a CMS

designer's associate that makes previous experience accessible and encapsulates the experience of

new design choices.

The CMS Designer's Associate

This proposal suggestsa framework fora computer-based designer'sassociate(DA) which

supportsdesign effortsin which experiencedetermines,more than any otherfactor,designer

performance. Figure 2 illustratesthe DA framework.

Within thisframework, the DA augments the designer'sexperience;itdoes not replacethe

designernor subsume any normal duties.Itisintended only toextend the designer'sreach.

Humans are good at creativeadaptationbut poor at remembering a fullrange ofdesigncases

because theytend tobe biasedintheirremembering. On the otherhand, thosethatlackrelevant

experiencemay n,_thave sufficientknowledge to solvethe designproblem effectively.The DA

can augment the memory limitationsofhumans, providingthem with designcases they would

otherwisefailtoremember. The DA framework attempts touse the bestqualitiesofbothhuman

and computer forsolvingdesign problems.

The DA framework has severalfacets:a domain specificconceptualframework, a design

ontology,the DA experience-base,a designeditor,and the designer'sassociateengine (i.e.,the

DA). The conceptualframework isused toorganizeand index designexperienceand may be seen

as both a standard vocabularyand domain taxonomy fordescribinggoals,needs,concepts,and

the likewithinthe domain ofinterest'e.g.,the conceptsofactivityand activitydictionaryare

important conceptsin command management). The designontologydescribesthe nature ofthe

designprocessand the design productina domain and problem independent fashion. Itallows

one tocapturethe iterativeand incrementalcharacterofthe designprocessas wellas the

interdependentqualitydecisionsabout theproblem contextand itssolutions.Both the de.-ign

product(i.e.,the product or output ofthe designprocess--e.g.,a mission-specificcommand

I0

management system) and the DA experience base is defined in terms of the design ontology.

Thus, expanding the DA experience base is a matter of merging the existing base with existing or

past design products. The design editor (a user interface) is the means through which the designer

formulates his/her designs, views those of others, and interacts with the DA. The editor utilizes the

conceptual framework to assist the designer in forming queries concerning past designs,

organizing problem context descriptions and design decisions, and formulating plans. This

architecture allows the editor and DA to be specialized by using a domain specific conceptual

framework. The designer's associate is composed of two components: a designer's associate

engine built upon a case-based reasoner and the experience base. This architecture allows the DA

to be further specialized by using problem specific experience bases.

For our purposes, a DA is the junior partner of a design team consisting of a human

designer and the computer-based DA. The role of the DA is to recall past design decisions or

experiences whose problem context or solution is similar to that being considered by the designer.

DA decision making is limited to determining the relevance of past design experiences in light of

the designer's current goals (i.e., that set of issues and requirements that are the current focus of

the designer's efforts). The role of designer is to create solutions to new problems and re-use or

adapt solutions to re-recurring problems based on design experiences recalled by the DA as well as

those with which the designer is personally acquainted. The DA expands its experience base

through its interaction with the designer by remembering previous design decisions.

The objective of the DA framework is to facilitate the collection and dissemination of

design experience. Design re-use can clearly improve designer performance over that which can

be achieved when re-use is not considered. That is, both designer productivity and design quality

may be enhanced. Productivity is potentially enhanced because less effort is involved in

assimilating design knowledge (if properly represented) than recreating it. Quality is often

enhanced though the design equivalent of natural selection. Over time, good designs are re-used,

are adapted, or guide and therefore become dominate while bad designs are discarded relatively

quickly. Yet, design re-use is not common.

Despite its merits, design re-use as well as the utilization of the underlying experience has

been hindered for want of a formal mechanism for disseminating relevant design information

throughout the CMS design community. Re-use has also been hindered by the lack of a common

conceptual framework. Without such a framework there is no widely accepted and understood

vocabulary for describing design goals, user requirements, or design solutions. Differences in

vocabulary not only induce design variability, but also obscure design similarity. The DA

framework is intended to address both of these issues through facilitating the collection and

dissemination of design experience and fostering the growth of a common conceptual framework

within the CMS design community. By serving as a focal point for the collection and

11

Designer

Decisions, Queries
concerning past

/experience

., Design Editor 1...,

Responses Responses

Design
Associate

Engiae

Decisions Past Design New Design
Experiences Experiences

Conceptual Current Experience
Framework Design Base

Defined
in Terms
of

Defined
in Terms
of

Design
Ontology

disseminationof designexperiencebased upon a common conceptualframework the DA will

fosterthe implicitcollaborationofCMS designersin a manner thattranscenosboth temporal and

projectboundaries.

12

Project Summary

Understanding Command Management Systems: How they operate. How they are developed

PortCMS applicationstoGeorgiaTech
SAMPEX CMS

WIND/POLAR

FAST (as available)

SOHO (as available)

Understand Commonalities and DifferencesAcross CMSs

Attend CMS Design Reviews

Review CMS Design Documents (SAMPEX, WIND/POLAR, SOHO)

Interviewswith CMS Developers

Interviewswith FOT responsiblefordevelopingrequirements

Conduct Task Analysis ofCMS Operations

SAMPEX
WIND/POLAR

Articulation of CMS Commonalities and Causes of Low Re-Use

• CMSS are more similar than different.

• Low re-use in part stems from failure to standardize on common components.
• Low re-use in part stems from a lack of availability experience/information of previous

designs.

Project Plan to Facilitate Increased Re-Use

Assumptions

• Re-use would be facilitatedby evolvinga corporatememory ofexistingsystems thatiseasily

accessibleto developersofnew systems.

• Re-use would be facilitatedby defininga common CMS coresoftwaresystem,likeTPOCC

software,such that each mission would instanciate(i.e.,refineand extend)the common core.

Re-use would be facilitatedby providinga developerwith a designer'sassociatethrough which

the designerwould instanciatemission-specificfeaturesofthe coresystem. The casebase
would facilitatere-useof existingdesignconceptsand components. As necessary,new design

features,i.e.,featuresthatare added or extensionsofexistingfeatures,are specifiedvia the

associate'sdevelopment environment and automaticallyadded tothe associate'scasebase.

Activities

1. CMS Browser:. A Case-Based Reasoning System to Facilitate Understanding Current CMS

Designs

2. Specification of Generic CMS Core Software
* intended aspart of TPOCC software
* mission-specific CMS as an instanciation of core system

13

* use commercial_f.the_helf software (e_g, editors, interface widgett data base
systems, etc.)

* evolve a common look and feel

3. CMS Design's Associate_ A Case-Based Design Environment to Specify New CMS Applications
Archive Design Decisions

14

Designer

/

J Query

Responses

Decisions, Queries

concerning past
experience

Design Editor [_..,

Responses

Design
Associate

Engine

Decisions Past Design
Experiences

New Design
Experiences

Conceptual
Framework

Current

Design
Experience

Base

Defined
in Terms
of

Def'med
in Terms
of

Design
Ontology

15

ProjectSummary

Understanding Command Management Systems: How they operate. How they are developed

Port CMS applications to Georgia Tech
SAMPEX CMS
WIND/POLAR
FAST _as available)
SOHO _as available)

Understand Commonalities and DifferencesAcross CMSs

Attend CMS Design Reviews
Review CMS Design Documents (SAMPEX, WIND/POLAR, SOHO)

Interwews with CMS Developers

Interviewswith FOT responsiblefordevelopingrequirements

Conduct Task Analysis of CMS Operations
SAMPEX
WIND/POLAR

Articulation ofCMS Commonalities and Causes of Low Re-Use

• CMSs are more similarthan different.

• Low re-usein part stems from failureto standardizeon common components.

• Low re-usein part stems from a lackofavailabilityexperience/informationofprevious

designs.

Project Plan to Facilitate Increased Re-Use

Assumptions

• Re-use would be facilitated by evolving a corporate memory of existing systems that is easily

accessible to developers of new systems.

• Re-use wouid be facilitated by defining a common CMS core software system, like TPOCC
software..,uch that each mission would instanciate {i.e., refine and extend) the common core.

Re-use would be facilitatedby providinga developerwith a designer'sassociatethrough which

the designerwould instanciatemission-specificfeaturesofthe coresystem. The casebase
would facilitatere-useofexistingdesignconceptsand components. ,_snecessary.,new design

features,i.e.,featuresthat are added orextensionsofexistingfeatures,are specifiedvia the

associate'sdevelopment environment and automaticallyadded to the associate'scase base.

Activities
During the second year of this RTOP, Georg_ _-Tech researchers will continue to be actively
involved in the evolution of the MOC (misslcz_ operations center) concept, particularly with respect

to the integration of real-time and off-line _i.e.. command management) functions. _'he effort
will involve reviewing documents and sottware, and attending major design reviews _e.g., XTE.
TRMM, ACE). The primary effort, however will focus on the activities listed below.

1. CMS Browser:. A Case-Based Reasoning System to Facilitate Understanding Current CMS

Designs

2. Speeificat/oaof Generic CMS Core Software
* intended as part of TPOCC software
* mission-specific CMS as an instanciation of core system
* use commercial-of-the-shelf software (e.g., editors, interface widget& data base

systems, etc.)
* evolve a common look and feel

3. CMS Design's Associate: A Case-Based Design Environment to Specify New CMS Applications
Archive Design Decisions

